Problem 10D,4

Suppose T is a bounded operator on a Hilbert space V and U is a closed subspace of V. Prove that the following are equavalent:

- U, U^{\perp} are invariant subsapces for T.
- U, U^{\perp} are invariant subspaces for T^*
- $TP_U = P_U T$.

Proof. a \iff b: Let $a \in U$, we know that for any $b \in U6 \perp, \langle T^*a, b \rangle = \langle a, Tb \rangle = 0$ thus $T^*a \in U$ which means that U is T^* invariant. Similar assertion holds for U^{\perp} .

a \longrightarrow c: For any $a \in V$, we can assume its decomposition is $a = b + c, b \in U, c \in U^{\perp}$. Then

$$TP_U(a) = T(b) = P_U T(b) = P_U T(b+c) = P_u T(a).$$

 $c \longrightarrow a$: For any $a \in U, b \in U^{\perp}$,

$$\langle Ta, b \rangle = \langle TP_Ua, b \rangle = \langle P_UTa, b \rangle = 0,$$

which implies $Ta \in U$. Other assertion follows similarly. \Box

Problem 10D,7

Suppose T is a self-adjoint compact operator on a Hilbert space but only has finitely many distinct eigenvalues. Prove that T has finite dimensional range.

Proof. This follows directly from 10.106. \Box

Problem 10D,12

Suppose T is a compact operator on a Hilbert space. Prove that $s_1(T) = ||T||$.

Proof. Recall that

$$||T|| = \sup_{||x||=1} ||Tx||.$$

and also 10.113. We know that $||T^*T|| = ||T||^2$. For any $x \in V$ with norm 1, decompose

 $x = x_0 + \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \dots$

as in 10.113, where e_0 is in null of T. Then

$$||T^*Tx||^2 = \sum_{k=1}^{\infty} |\langle x, e_k \rangle s_k^2|^2 \le s_1^4 \sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le s_1^4$$

with equality holds when $x = e_1$. This finishes the proof. \Box

Problem 10D,17

Suppose T is a compact operator on a Hilbert space with singular value decomposition

$$Tf = \sum_{k \in \Omega} s_k < f, e_k > h_k,$$

for all $f \in V$. Prove that

$$T^*f = \sum_{k \in \Omega} s_k < f, h_k > e_k$$

for all $f \in V$.

Proof. Following the proof in 10.113, we know that

$$T^*h_k = \frac{T^*Te_k}{s_k} = \frac{s_k^2e_k}{s_k} = s_ke_k.$$

And if $v \in V$ such that $\langle v, h_k \rangle = 0$ for any k, then $\langle T^*v, e_k \rangle = 0$ which implies $T^*v = 0$.So

$$T^*f = T^*(\sum_{k \in \Omega} < f, h_k > h_k) = \sum_{k \in \Omega} < f, h_k > T^*h_k = \sum_{k \in \Omega} s_k < f, h_k > e_k$$

Problem 11A,4 Suppose $f \in L^1(\partial D), z \in \partial D$ and f is continuous at z. Prove that

$$\lim_{r\uparrow 1} (P_r f)(z) = f(z)$$

Proof. Following the proof in 11.18, we find we only need to show that

$$\lim_{r\uparrow 1} \int_{\{\zeta\in\partial D: |\zeta-z|\geq \delta\}} |f(\zeta) - f(z)| P_r(z\bar{\zeta}) = 0$$

This is easy to see since on the integral domain, $P_r(z\bar{\zeta})$ uniformly converges to 0 so we can use dominated convergence theorem to finish the proof. \Box

Problem 11A,6

Prove that for each $p \in [1, \infty)$, there exists $f \in L^1(\partial D)$ such that

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)|^p = \infty$$

Proof. Theorem 3.3.4 in Loukas Grafakous' book "Classical Fourier Analysis" is a stronger result. Interested people can find the construction there. \Box

Problem 11A,10 Suppose $f : \partial D \to \mathbb{C}$ is three times continuously differentiable. Prove that for all $z \in \partial D$,

$$f^{[1]}(z) = i \sum_{n=-\infty}^{\infty} n\hat{f}(n)z^n.$$

Proof. Follow the proof in 11.27, three time differentiable implies for all $z \in \partial D$,

$$\sum_{n=-\infty}^{\infty} |n\hat{f}(n)z^n| < \infty$$

Then apply the Possion summation formula to $f^{[1]}$ and recall 11.26 $(f^1)(n) = in\hat{f}(n)$, this finishes the proof. (The proof is word by word as in the proof of 11.27.) \Box Problem 11A,12

Define $f:\partial D\to \mathbb{R}$ by

$$f(z) = \begin{cases} 1 & Imz > 0\\ 0 & Imz = 0\\ -1 & Imz < 0 \end{cases}$$

• Show that if $n \in \mathbb{Z}$, then

$$\hat{f}(n) = \begin{cases} \frac{-2i}{n\pi} & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

• Show that for $r \in [0, 1), z \in \partial D$,

$$(P_r f)(z) = \frac{2}{\pi} \arctan \frac{2rImz}{1-r^2}$$

- Verify $\lim_{r\uparrow 1} (P_r f)(z) = f(z)$ for every $z \in \partial D$.
- Prove that $P_r f$ does not converge uniformly to f on ∂D .

Proof. • When n is even, by symmetry, the integral is zero. when n is odd,

$$\hat{f}(n) = \int_0^\pi \frac{\cos nt - i\sin nt}{2\pi} dt - \int_{-\pi}^0 \frac{\cos nt - i\sin nt}{2\pi} dt = \frac{-2i}{n\pi}$$

• From 11.11, we know that

$$(P_r f)(z) = \sum_{n \text{ odd}} r^{|n|} \frac{-2i}{n\pi} z^n = \frac{-2i}{\pi} \sum_{k=0}^{\infty} \frac{(rz)^{2k+1} - (r\bar{z})^{2k+1}}{2k+1} = \frac{2}{\pi} \arctan \frac{2rImz}{1-r^2}$$

- This is obvious.
- Let n be any positive integer. For $1 r = \frac{1}{n}$, set z such that Imz > 0, $\frac{2rImz}{1-r^2} = 1$, then $|1 f(z)| = \frac{1}{2}$. This shows that the convergence is not uniformly. \Box