
Hanbing Fang Homework 12 MAT324: Real Analysis

Problem 10D,4
Suppose T is a bounded operator on a Hilbert space V and U is a closed subspace of V . Prove that the
following are equavalent:

• U,U⊥ are invariant subsapces for T .

• U,U⊥ are invariant subspaces for T ∗

• TPU = PUT .

Proof. a ⇐⇒ b: Let a ∈ U , we know that for any b ∈ U6⊥, < T ∗a, b >=< a, Tb >= 0 thus T ∗a ∈ U which
means that U is T ∗ invariant. Similar assertion holds for U⊥.

a −→ c: For any a ∈ V , we can assume its decompostion is a = b+ c, b ∈ U, c ∈ U⊥. Then

TPU (a) = T (b) = PUT (b) = PUT (b+ c) = PuT (a).

c −→ a: For any a ∈ U, b ∈ U⊥,

< Ta, b >=< TPUa, b >=< PUTa, b >= 0,

which implies Ta ∈ U . Other assertion follows similarily.

Problem 10D,7
Suppose T is a self-adjoint compact operator on a Hilbert space but only has finitely many distinct
eigenvalues. Prove that T has finite dimenisonal range.

Proof. This follows directly from 10.106.

Problem 10D,12
Suppose T is a compact operator on a Hilbert space . Prove that s1(T ) =∥T∥.

Proof. Recall that
∥T∥ = sup

∥x∥=1

∥Tx∥.

and also 10.113. We know that ∥T ∗T∥ =∥T∥2.For any x ∈ V with norm 1, decompose

x = x0+ < x, e1 > e1+ < x, e2 > e2 + . . .

as in 10.113, where e0 is in null of T . Then

∥T ∗Tx∥2 =

∞∑
k=1

| < x, ek > s2k|2 ≤ s41

∞∑
k=1

| < x, ek > |2 ≤ s41

with equality holds when x = e1. This finishes the proof.

Problem 10D,17
Suppose T is a compact operator on a Hilbert space with singular value decomposition

Tf =
∑
k∈Ω

sk < f, ek > hk,

for all f ∈ V . Prove that
T ∗f =

∑
k∈Ω

sk < f, hk > ek
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for all f ∈ V .

Proof. Following the proof in 10.113, we know that

T ∗hk =
T ∗Tek
sk

=
s2kek
sk

= skek.

And if v ∈ V such that < v, hk >= 0 for any k, then < T ∗v, ek >= 0 which implies T ∗v = 0.So

T ∗f = T ∗(
∑
k∈Ω

< f, hk > hk) =
∑
k∈Ω

< f, hk > T ∗hk =
∑
k∈Ω

sk < f, hk > ek

Problem 11A,4
Suppose f ∈ L1(∂D), z ∈ ∂D and f is continuous at z. Prove that

lim
r↑1

(Prf)(z) = f(z)

Proof. Following the proof in 11.18, we find we only need to show that

lim
r↑1

∫
{ζ∈∂D:|ζ−z|≥δ}

|f(ζ)− f(z)|Pr(zζ̄) = 0

This is easy to see since on the integral domain, Pr(zζ̄) uniformly converges to 0 so we can use dominated
convergence theorem to finish the proof.

Problem 11A,6
Prove that for each p ∈ [1,∞), there exists f ∈ L1(∂D) such that

∞∑
n=−∞

|f̂(n)|p = ∞

Proof. Theorem 3.3.4 in Loukas Grafakous’ book ”Classical Fourier Analysis” is a stronger result. Interested
people can find the construction there.

Problem 11A,10
Suppose f : ∂D → C is three times continuously differentiable. Prove that for all z ∈ ∂D,

f [1](z) = i

∞∑
n=−∞

nf̂(n)zn.

Proof. Follow the proof in 11.27, three time differentiable implies for all z ∈ ∂D,
∞∑

n=−∞
|nf̂(n)zn| < ∞

Then apply the Possion summation formula to f [1] and recall 11.26 (f1)ˆ(n) = inf̂(n), this finishes the proof.
(The proof is word by word as in the proof of 11.27.)
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Problem 11A,12
Define f : ∂D → R by

f(z) =

 1 Imz > 0
0 Imz = 0

−1 Imz < 0

• Show that if n ∈ Z, then
f̂(n) =

{ −2i
nπ n odd
0 n even

• Show that for r ∈ [0, 1), z ∈ ∂D,

(Prf)(z) =
2

π
arctan

2rImz

1− r2

• Verify limr↑1(Prf)(z) = f(z) for every z ∈ ∂D.

• Prove that Prf does not converge uniformly to f on ∂D.

Proof. • When n is even, by symmetry, the integral is zero. when n is odd,

f̂(n) =

∫ π

0

cosnt− i sinnt

2π
dt−

∫ 0

−π

cosnt− i sinnt

2π
dt =

−2i

nπ

• From 11.11, we know that

(Prf)(z) =
∑
n odd

r|n|
−2i

nπ
zn =

−2i

π

∞∑
k=0

(rz)2k+1 − (rz̄)2k+1

2k + 1
=

2

π
arctan

2rImz

1− r2

• This is obvious.

• Let n be any positive integer. For 1− r = 1
n , set z such that Imz > 0, 2rImz

1−r2 = 1, then |1− f(z)| = 1
2 .

This shows that the convergence is not uniformly.
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